[image:]
[bookmark: _ka7mok9fkx9z]Coding Standards and Best Practices Guidelines
This template is a step by step guide to help you state coding standards and best practices guidelines for your new product or software:
[bookmark: _buhg8w830k61]1. General Principles
[bookmark: _4q2nux3q6ptg]1.1 Consistency
· Maintain consistency in code style and structure throughout the project.
· Use a common coding standard (e.g., PEP 8 for Python, Google Java Style Guide for Java).
[bookmark: _kpovvoppmkcy]1.2 Readability
· Write code that is easy to read and understand.
· Use meaningful names for variables, functions, and classes.
· Include comments and documentation to explain complex logic and decisions.
[bookmark: _avlxen4bph5a]1.3 Maintainability
· Write code that is easy to maintain and extend.
· Avoid hard-coding values; use constants or configuration files.
· Modularize code by breaking down functionality into smaller, reusable functions or classes.

[bookmark: _yndowpehcxav]
[bookmark: _qhyjvso3kh8v]
[bookmark: _u99fpqdgbkzk]
[bookmark: _5rr2c5d2pr7d]
[bookmark: _ltro9j92lg84]
[bookmark: _vdczlot391sj]2. Naming Conventions
[bookmark: _1qxl4rllv1bx]2.1 Variables
· Use descriptive names that convey the purpose of the variable.
· Use camelCase for variable names (e.g., totalAmount, userName).
[bookmark: _wa7x6v8vtr0]2.2 Functions and Methods
· Use verbs or verb phrases to name functions (e.g., calculateTotal, getUserInfo).
· Use camelCase for function and method names.
[bookmark: _yxg0fhgeluqo]2.3 Classes
· Use nouns or noun phrases to name classes (e.g., Customer, Order).
· Use PascalCase for class names.
[bookmark: _cp8ptd7g9sx1]2.4 Constants
· Use all uppercase letters with underscores to separate words (e.g., MAX_CONNECTIONS, DEFAULT_TIMEOUT).

[bookmark: _cbfoc5ngi7uy]3. Code Structure and Formatting
[bookmark: _r017p3qpjslx]3.1 Indentation
· Use consistent indentation (e.g., 4 spaces per level).
· Do not use tabs; use spaces for indentation.
[bookmark: _yvf9892qisvb]3.2 Line Length
· Limit line length to a maximum of 80-100 characters.
· Break long lines into multiple lines for better readability.
[bookmark: _5nwd823suuvy]
[bookmark: _ags0vyk5vb63]
[bookmark: _7h3ud94gw6xe]3.3 Blank Lines
· Use blank lines to separate logical sections of code.
· Add blank lines around function and class definitions.
[bookmark: _u634v27u7r74]3.4 Braces
· Use braces even for single-line conditional statements and loops.
· Place opening braces on the same line as the statement (e.g., if (condition) {).

[bookmark: _9bww7z7mt4kg]4. Commenting and Documentation
[bookmark: _2sggv8u0yzzv]4.1 Inline Comments
· Use inline comments sparingly and only for complex or non-obvious code.
· Place inline comments on the same line as the code they refer to, preceded by two spaces (e.g., int count = 0; // Initialize count).
[bookmark: _fo8fn6vrw6vs]4.2 Block Comments
· Use block comments to explain code sections, algorithms, or important decisions.
· Place block comments above the code they refer to.
[bookmark: _yxtvcwp2atfd]4.3 Documentation Comments
· Use documentation comments to describe the purpose, parameters, and return values of functions and classes.
· Follow the documentation standard of your language (e.g., Javadoc for Java, docstrings for Python).

[bookmark: _jq2vde4qat32]
[bookmark: _jv046da4xgh2]
[bookmark: _62y60bg1do06]
[bookmark: _m8pjloo597u7]5. Error Handling
[bookmark: _y3f6ynoihj1m]5.1 Exceptions
· Use exceptions for handling errors and exceptional conditions.
· Avoid using exceptions for regular control flow.
[bookmark: _2tuvhqrf5fk9]5.2 Logging
· Use logging to record significant events and errors.
· Include sufficient context in log messages to facilitate debugging.

[bookmark: _csqyhnlhvw3p]6. Testing
[bookmark: _v3bp5ua57qlt]6.1 Unit Tests
· Write unit tests for individual functions and methods.
· Ensure tests cover various edge cases and error conditions.
[bookmark: _wl8ifh2cqvl7]6.2 Integration Tests
· Write integration tests to verify the interactions between different components.
· Use mock objects and stubs to isolate dependencies.
[bookmark: _qejx2t2dsem8]6.3 Test Coverage
· Aim for high test coverage, but prioritise meaningful tests over achieving a specific percentage.
· Regularly run tests and include them in your continuous integration process.

[bookmark: _1xonrne3tbao]
[bookmark: _c2rzg97xmw0b]
[bookmark: _53t3kcc60cmw]
[bookmark: _w16pl91vq1j6]7. Code Reviews
[bookmark: _ibdmy3s5pce8]7.1 Peer Reviews
· Conduct regular code reviews to ensure adherence to coding standards and best practices.
· Use code review tools to facilitate the review process (e.g., GitHub Pull Requests, Gerrit).
[bookmark: _ikcgopq2r0s6]7.2 Review Guidelines
· Focus on the code's functionality, readability, and maintainability.
· Provide constructive feedback and suggestions for improvement.

[bookmark: _lt6bbod0td19]8. Security Best Practices
[bookmark: _hpv9h754rdxm]8.1 Input Validation
· Validate and sanitise all user inputs to prevent injection attacks.
· Use libraries and frameworks that provide built-in protection against common security vulnerabilities.
[bookmark: _qpqab62aoys1]8.2 Authentication and Authorization
· Use secure authentication and authorization mechanisms.
· Follow the principle of least privilege when granting access to resources.
[bookmark: _hwskk6al7aoq]8.3 Data Protection
· Encrypt sensitive data at rest and in transit.
· Use secure storage for credentials and other sensitive information.

[bookmark: _38o50id96gqu]
[bookmark: _cwnrg1uulzm]
[bookmark: _jvmr3gkme2i6]9. Performance Optimization
[bookmark: _o4x3n654fhp4]9.1 Efficient Algorithms
· Choose efficient algorithms and data structures to optimise performance.
· Avoid premature optimization; focus on clarity and correctness first.
[bookmark: _tbgnvsmf1yfd]9.2 Profiling
· Use profiling tools to identify and address performance bottlenecks.
· Optimise code based on profiling results, not assumptions.

Not sure where to start? Claim your free consultation from puffincube.com [image:]
image1.png

image2.png

